Current state-of-the-art summarization models are trained with either maximum likelihood estimation (MLE) or reinforcement learning (RL). In this study, we investigate the third training paradigm and argue that inverse reinforcement learning (IRL) may be more suitable for text summarization. IRL focuses on estimating the reward function of an agent, given a set of observations of that agent's behavior. Generally, IRL provides advantages in situations where the reward function is not explicitly known or where it is difficult to define or interact with the environment directly. These situations are exactly what we observe in summarization. Thus, we introduce inverse reinforcement learning into text summarization and define a suite of sub-rewards that are important for summarization optimization. By simultaneously estimating the reward function and optimizing the summarization agent with expert demonstrations, we show that the model trained with IRL produces summaries that closely follow human behavior, in terms of better ROUGE, coverage, novelty, compression ratio and factuality when compared to the baselines trained with MLE and RL.
translated by 谷歌翻译
Massively multi-task learning with large language models has recently made substantial progress on few-shot generalization. However, this is usually performed in a centralized learning fashion, ignoring the privacy sensitivity issue of (annotated) data used in multiple tasks. To mitigate this issue, we propose FewFedWeight, a few-shot federated learning framework across multiple tasks, to achieve the best of both worlds: privacy preservation and cross-task generalization. FewFedWeight trains client models in isolated devices without sharing data. It broadcasts the global model in the server to each client and produces pseudo data for clients so that knowledge from the global model can be explored to enhance few-shot learning of each client model. An energy-based algorithm is further proposed to weight pseudo samples in order to reduce the negative impact of noise from the generated pseudo data. Adaptive model weights of client models are also tuned according to their performance. We use these model weights to dynamically aggregate client models to update the global model. Experiments on 118 NLP tasks show that FewFedWeight can significantly improve the performance of client models on 61% tasks with an average performance improvement rate of 30.5% over the baseline and substantially outperform FedAvg and other decentralized learning methods.
translated by 谷歌翻译
Knowledge distillation (KD) has been widely used for model compression and knowledge transfer. Typically, a big teacher model trained on sufficient data transfers knowledge to a small student model. However, despite the success of KD, little effort has been made to study whether KD leaks the training data of the teacher model. In this paper, we experimentally reveal that KD suffers from the risk of privacy leakage. To alleviate this issue, we propose a novel knowledge distillation method, swing distillation, which can effectively protect the private information of the teacher model from flowing to the student model. In our framework, the temperature coefficient is dynamically and adaptively adjusted according to the degree of private information contained in the data, rather than a predefined constant hyperparameter. It assigns different temperatures to tokens according to the likelihood that a token in a position contains private information. In addition, we inject noise into soft targets provided to the student model, in order to avoid unshielded knowledge transfer. Experiments on multiple datasets and tasks demonstrate that the proposed swing distillation can significantly reduce (by over 80% in terms of canary exposure) the risk of privacy leakage in comparison to KD with competitive or better performance. Furthermore, swing distillation is robust against the increasing privacy budget.
translated by 谷歌翻译
Hybrid tabular-textual question answering (QA) requires reasoning from heterogeneous information, and the types of reasoning are mainly divided into numerical reasoning and span extraction. Despite being the main challenge of the task compared to extractive QA, current numerical reasoning method simply uses LSTM to autoregressively decode program sequences, and each decoding step produces either an operator or an operand. However, the step-by-step decoding suffers from exposure bias, and the accuracy of program generation drops sharply with progressive decoding. In this paper, we propose a non-autoregressive program generation framework, which facilitates program generation in parallel. Our framework, which independently generates complete program tuples containing both operators and operands, can significantly boost the speed of program generation while addressing the error accumulation issue. Our experiments on the MultiHiertt dataset shows that our model can bring about large improvements (+7.97 EM and +6.38 F1 points) over the strong baseline, establishing the new state-of-the-art performance, while being much faster (21x) in program generation. The performance drop of our method is also significantly smaller than the baseline with increasing numbers of numerical reasoning steps.
translated by 谷歌翻译
在完全共享所有语言参数的多语言神经机器翻译模型中,通常使用人工语言令牌来指导转换为所需的目标语言。但是,最近的研究表明,预备语言代币有时无法将多语言神经机器翻译模型导航到正确的翻译方向,尤其是在零弹性翻译上。为了减轻此问题,我们提出了两种方法:语言嵌入实施例和语言意识的多头关注,以学习信息丰富的语言表示,以将翻译转换为正确的方向。前者体现了沿着从源到目标的信息流中的不同关键切换点的语言,旨在放大翻译方向引导信号。后者利用矩阵而不是向量来表示连续空间中的语言。矩阵分为多个头,以学习多个子空间中的语言表示。在两个数据集上进行大规模多语言神经机器翻译的实验结果表明,语言意识到的多头注意力受益于监督和零弹性翻译,并大大减轻了脱靶翻译问题。进一步的语言类型学预测实验表明,通过我们的方法学到的基于基质的语言表示能够捕获丰富的语言类型学特征。
translated by 谷歌翻译
通常通过过去的选择来告知机器学习中的评估,例如要使用哪些数据集或指标。该标准化可以使用排行榜对平等基础进行比较,但是随着出现更好的替代方案,评估选择变得不佳。这个问题在自然语言生成中尤其相关,该语言需要不断改善的数据集,指标和人类评估以提出确定性的主张。为了使遵循最佳模型评估实践更加容易,我们介绍了GEMV2。新版本的一代,评估和指标基准为数据集,模型和指标开发人员提供了模块化基础架构,以使彼此受益。GEMV2支持40种记录的数据集中51种语言。所有数据集的模型都可以在线评估,我们的交互式数据卡创建和渲染工具使得在Living Benchmark中添加新数据集变得更加容易。
translated by 谷歌翻译
通常认为语言模型能够编码语法[Tenney等,2019; Jawahar等,2019; Hewitt和Manning,2019]。在本文中,我们提出了UPOA,这是一种无监督的组成分析模型,该模型仅基于以验证的语言模型学习为跨度分割的句法距离,仅基于自我发挥的权重矩阵来计算出OUT关联得分。我们进一步提出了一个增强的版本UPIO,该版本利用了内部关联和外部关联得分来估计跨度的可能性。使用UPOA和UPIO的实验揭示了自我注意机制中查询和密钥的线性投影矩阵在解析中起重要作用。因此,我们将无监督的模型扩展到了几个射击模型(FPOA,FPIO),这些模型使用一些注释的树来学习更好的线性投影矩阵进行解析。宾夕法尼亚河岸上的实验表明,我们的无监督解析模型UPIO实现了与短句子(长度<= 10)相当的结果。我们的几个解析模型FPIO接受了仅20棵带注释的树木的训练,优于前几种镜头解析方法,该方法接受了50棵带注释的树木的训练。交叉解析的实验表明,无监督和少数解析方法都比SPMRL大多数语言的先前方法都更好[Seddah等,2013]。
translated by 谷歌翻译
认知处理信号可用于改善自然语言处理(NLP)任务。但是,目前尚不清楚这些信号如何与语言信息相关。在神经语言学中,人类语言处理和语言特征之间的桥接通常通过具有高度控制的刺激的单可变控制实验,广泛研究。这些方法不仅损害了自然读数的真实性,而且耗时且昂贵。在本文中,我们提出了一种数据驱动方法来研究认知处理信号与语言特征之间的关系。具体而言,我们提出了一种统一的注意力框架,它由嵌入,注意,编码和预测层组成,以选择性地将认知处理信号映射到语言特征。我们将映射过程定义为桥接任务,并为词汇,句法和语义特征开发12个桥接任务。所提出的框架仅需要在自然读数下记录的认知处理信号作为输入,并且可用于检测具有单个认知数据集的广泛的语言特征。实验结果的观察结果与以前的神经科学结果共鸣。除此之外,我们的实验还揭示了许多有趣的发现,例如语境上跟踪特征与句子时态之间的相关性。
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译